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and -78 to 0 0C for 2 h, the reaction mixture was quenched 
by the addition of water, concentrated in vacuo to remove 
tetrahydrofuran and extracted with hexane containing a few 
drops of triethylamine.16 The crude product was isolated by 
drying over sodium sulfate and removal of solvent in vacuo and 
then rapidly chromatographed on basic alumina (activity V) 
using ether-hexane (2:3) containing a little triethylamine to 
afford in 35% yield pure epoxy ester 14, R/ 0.48 (triethyl-
amine-treated silica gel plate with ether-hexane, 1:1): ultra­
violet X11111x (methanol) 269, 278, 287 nm (e 30 500, 40 00*0'," 
34 400). Since the epoxy ester 14 is both air and acid sensitive, 
it was stored at —78 0C under argon in frozen benzene con­
taining a small amount of triethylamine and 4-hydroxy-
2,2,6,6-tetramethylpiperidinooxy free radical17 as stabilizers."* 
The 1H NMR spectrum of 14 indicates that the synthetic 
product consists of approximately equal amounts of 5,6-cis and 
5,6-trans epoxides. Saponification of 14 with cold aqueous base 
under argon produced solutions of the salt of 2, which could 
be reconverted into 14 with dimethyl sulfate. 

The methyl ester 14, when treated with methanol, undergoes 
rapid soivolysis to form approximately the same mixture of 
methyl ethers as are observed to form when the unstable bio-
synthetic precursor of 1 in neutrophils is quenched with 
methanol and esterified with diazomethane (comparison by 
gas chromatography-mass spectrometry).19 In addition a 
similar mixture of the methyl esters of 1 and its isomers re­
sulted from nonenzymic, acid-catalyzed hydrolysis of synthetic 
14 and the natural unstable intermediate from neutrophils 
(after treatment with diazomethane).19 

The ready availability of 2 and its methyl ester 14 by a 
simple synthesis opens the way for a host of interesting bio­
logical experiments. We are currently studying the large-scale 
synthesis of SRSA and related compounds and, in addition, 
other synthetic routes to the eicosanoid 14 and its A-7,9 ste­
reoisomers.20 It now appears that proof of the detailed struc­
ture of SRSA is most likely to be obtained by a comparison of 
synthetic and naturally derived compounds.21 
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Contribution of Tunneling to Relative Reactivity 
in an Elimination Reaction1 

Sir: 

We have found that tunneling can make different contri­
butions to the rates of proton removal from different sites in 
the same molecule. 

The influence of tunneling on the magnitude and the tem­
perature dependence of kinetic hydrogen isotope effects has 
been explored by numerous workers,2-4 but the possible con­
tribution of tunneling to relative reactivities has to our 
knowledge not been discussed. It is evident, however, that two 
reactions with different tunnel corrections to their isotope ef­
fects must also have different tunnel corrections to the reaction 
rates for the light isotopic species. 

We determined isotope effects as a function of temperature 
by careful GLC measurement of l-ene:2-ene ratios for the E2 
reaction of 1-3 (ONs = p-nitrobenzenesulfonate) with sodium 

(CHj)2CHCHCH3 (CH3J2CDCHCH3 (CH3J2CHCHCD3 

I I I 
ONs ONs ONs 

1 2 3 

ethoxide in ethanol (10-60 0C) and potassium rerr-butoxide 
in tert-buty\ alcohol (20-70 0C). The isotope effect on for­
mation of 1-ene is then given by &H/&D = (l-ene:2-ene)i/ 
(1 -ene:2-ene)3, and similarly for the isotope effect on formation 
of 2-ene. The rate of elimination into the undeuterated branch 
is taken to be unaffected by deuterium in the other branch, an 
assumption that is probably good to within a few percent. The 
results are corrected for the small amount of soivolysis that 
occurs in ethanol and for the incomplete deuteration (2.88 
atoms D) of 3. 2 was >99% deuterated. 

Linear regression fits to the Arrhenius equation give the 
apparent Arrhenius parameters AMjA.^ and £ a D — £a H for 
the reactions yielding 1-ene and 2-ene. From these parameters, 
the tunnel corrections QlH and QlD can be evaluated by means 
of equations derived on the assumption that the first term of 
the Bell equation suffices to describe the tunneling behavior 
of the system.5 The computer program used for this purpose 
is described in more detail elsewhere.6 It is based on essentially 
the same principles as the program of Caldin and Mateo.7 

From the tunnel corrections the semiclassical values of 
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Table I. Arrhenius Parameters and Tunnel Corrections for the 
Reaction of 3-Methyl-2-butyl p-Nitrobenzenesulfonate with 
Alkoxides in the Corresponding Alcohols 

alkoxide 
quantity" 

(^aH/^aD)l -ene 
( ^ a H / ^ a D h - e n e 

( £ a D _ £aH)l-eneC 

( £ a D - £aH)2-ene'' 
(^H/^D)obsd, 1-ene* 
(^H/^D)obsd, 2-ene* 
(QtH/'£?tD)l-ene 

(2tH/6tD)2-ene 
(^H/^D)s.l-ene 
(^H/^D)s,2-ene 
2tH(l-ene) 
(2tH(2-ene) 
(K 2-ene/^ l-ene)obsd 
V^2-ene/^l-ene)s 

EtONa 

0.247 ± 0.037 
1.053 ±0.186 
1.580 ±0.102 
0.479 ±0.107 
3.39 
2.33 
2.00 
1.00 
1.69 
2.33 
3.37 
1.00 
4.6 

15.5 

t-BuOK 

0.174 ±0.039 
0.641 ±0.191 
1.928 ±0.162 
0.801 ±0.187 
4.30 
2.43 
2.44 
1.42 
1.77 
1.72 
4.48 
1.91 
0.48 
1.13 

" Temperature-dependent quantities are for 30 0C in all cases. 
* Calculated from the Arrhenius parameters rather than directly 
observed, so as to smooth random variations prior to the computer fits. 
c kcal mol_i. 

A H / ^ D and A^-eneAi-ene—those values that would be observed 
in the absence of tunneling—can be calculated, since 

(W^D)ObSd = (6tH/6tD)(^H/*D)s 

and 

(£ 2-ene A l -cne)obsd — [2tH(2-ene)/£?tH(l-ene)](Ar2-ene/k l-ene)s 

The Arrhenius parameters and the various quantities derived 
from them are collected in Table I. 

It is obvious, both qualitatively from the Arrhenius pa­
rameters and quantitatively from the dissection into tunnel 
corrections and semiclassical values, that tunneling does sig­
nificantly affect the ratio of Saytzev to Hofmann product in 
this typical E2 reaction. Discussions of orientation8 customarily 
consider the influence of inductive, hyperconjugative, and 
steric effects on the relative free energies of the respective 
transition states. Such thermodynamic comparisons necessarily 
ignore the strictly kinetic phenomenon of tunneling; so we 
should direct our attention to (Ar2-ene/Ari-ene)s, not (Zc2-ene/ 
A' i-enc)obsd- When we do so with the present data, a fairly strong 
observed preference for the Saytzev product (2-ene) with 
ethoxide-ethanol becomes much stronger, and the modest 
observed preference for the Hofmann product (1-ene) with 
tert-butox'ide-tert-bulyl alcohol disappears. Substantial dif­
ferences between orientation in the two media remain, of 
course, but revisions in our evaluation of the factors deter­
mining orientation are certainly in order. We have experiments 
in progress to delineate further the role of tunneling in orien­
tation in E2 reactions. Until more data are available, it seems 
pointless to discuss just what changes in theories of orientation 
may be necessary. 

It is interesting to speculate briefly on why tunneling should 
be more important in formation of the Hofmann than the 
Saytzev product. At first sight, it goes against the idea that 
greater steric congestion in the transition state should facilitate 
tunneling.3 We suggest that the difference in steric effects 
between the reactions forming 1-ene and 2-ene may not be 
great enough to bring this factor into play. It is likely, however, 
that the transition state leading to the Saytzev product has 
more double-bond character than that leading to the Hofmann 
product, which would result in more heavy-atom motion in the 
reaction coordinate.6,9 The movement apart of the two 
/3-methyl groups as the /3 carbon goes from sp3 to sp2 should 
add further to this heavy-atom motion. Both types of heavy-

atom motion should tend to decrease the contribution of tun­
neling. 

The semiclassical isotope effects show a distinctly different 
pattern from the observed ones. The larger observed isotope 
effects on 1-ene than 2-ene formation result entirely from 
tunneling, as does the larger isotope effect for 1-ene formation 
with re/-?-butoxide than with ethoxide. The fact that ( /CHAD)S 
on 2-ene formation is no smaller than that on 1-ene formation 
(indeed, with ethoxide-ethanol it appears somewhat larger) 
argues against the suggestion that Saytzev products are formed 
via more E2C-like transition states than Hofmann prod­
ucts.1 0 '" The E2C transition state is postulated to have a 
base-hydrogen-carbon angle substantially less than the 180° 
of the E2H transition state,10 and reactions with nonlinear 
transition states should have smaller (ATH/A;D)S values than 
those with linear transition states.12 
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29Si NMR Studies of Relatively Stable Silaethylenes 

Sir: 

Recently the conversion of pivaloyltris(trimethylsilyl)silane 
(I) into the isomeric silaethylene II, which exists in solution 
in equilibrium with its dimer III, was described.1 Of particular 
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